R

adioaktive Abfälle, landläufig auch als Atommüll bezeichnet, entstehen überwiegend beim Betrieb von Kernkraftwerken und im Anschluss bei deren Rückbau. In der Forschung fallen ebenfalls radioaktive Abfälle an und in geringeren Mengen auch in der Industrie und Medizin.

Deutschland hat entschieden, sämtliche Arten radioaktiver Abfälle tief unter der Erdoberfläche endzulagern. An die Standortauswahl, die Genehmigung und den Betrieb von Endlagern werden hohe Anforderungen gestellt.

Hier finden Sie Hintergrundinformationen zu Abfallarten und deren Entstehung; zu Behandlung, Verpackung und Lagerung; zu Behälterkontrolle sowie zu den Akteuren und den Verantwortlichkeiten.

Abfallarten und Entstehung

  • Radioaktive Abfälle stammen überwiegend aus der Erforschung, dem Betrieb und dem Rückbau von Kernkraftwerken.
  • Sie werden in verschiedene Abfallarten unterteilt. Entscheidend dafür ist, wie viel Wärme sie abgeben, und wie hoch ihre Radioaktivität ist.
  • Für einen Teil der Abfälle – die schwach- und mittelradioaktiven -  hat Deutschland mit dem Endlager Konrad einen Entsorgungsweg gefunden.
  • Für den Rest muss ein Endlager gesucht und genehmigt werden.

Abfallarten

Radioaktive Stoffe werden unterschieden in schwach-, mittel- und hochradioaktiv. Für die Bewertung der radioaktiven Abfälle spielen weitere Faktoren eine Rolle, etwa die Halbwertzeit für den Zerfall oder die Radiotoxizität (gesundheitsschädliche Wirkung von radioaktiven Substanzen).

Neben der radiologischen Betrachtung, also welche Strahlenbelastung radioaktive Abfälle darstellen, ist insbesondere ihre Wärmeentwicklung ein entscheidendes Merkmal. Hohe Wärmeabgabe ist im Rahmen der Endlagersuche eine zusätzliche Belastung für das Endlagergestein. Deshalb hat sich die Bundesrepublik Deutschland dazu entschieden, zwei Kategorien radioaktiver Abfälle zu unterscheiden:

  • wärmeentwickelnde radioaktive Abfälle
    Das sind zum einen die hochradioaktiven Materialien der verbrauchten Kernbrennstoffe und aus der Wiederaufarbeitung, die durch ihren radioaktiven Zerfall Wärme abstrahlen. Zum anderen gehört aufgrund der Wärmeabgabe auch ein Teil der mittelradioaktiven Abfälle dazu.
  • radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung
    Das sind die schwachradioaktiven Abfälle und der Großteil der mittelradioaktiven Abfälle.
Beladung eines CASTOR-Behälters (Bildrechte: Preussen Elektra GmbH/Bernhard Ludewig)

Gesteine können Wärme unterschiedlich gut abführen und sind unterschiedlichstark wärmebelastbar. Das heißt, ihre für die Endlagerung positiven Eigenschaften könnten bei zu hoher Wärmebelastung teilweise verloren gehen. Eine Temperaturerhöhung des Gesteins von weniger als drei Grad kann vernachlässigt werden. Dieser Wert entspricht der natürlichen Temperaturzunahme bei einem Tiefenunterschied von 100 Metern in Bergwerken. Für das Endlager Konrad ist diese Bedingung im Genehmigungsverfahren festgeschrieben worden.

Den Großteil des Abfalls verursacht der Rückbau der Kernkraftwerke

Beim Blick auf die Herkunft der radioaktiven Abfälle wird klar, dass etwa 95 Prozent aus der Erforschung, dem Betrieb und dem Rückbau der Kernkraftwerke stammt. Dabei hat die Bundesrepublik Deutschland mit ihren Forschungseinrichtungen und dem Abriss der DDR-Kernkraftwerke einen Anteil von rund einem Drittel. Zwei Drittel der Abfälle stammen aus den Anlagen der Energieversorger. Die Bundesländer haben einen deutlich geringeren Anteil, da sie keine großen Kraftwerke zurückbauen müssen. Die Länder sind für radioaktive Materialien aus Industriebetrieben, Hochschulforschung und Medizin verantwortlich und sammeln diese in ihren Landessammelstellen.

Bezogen auf die Menge beziehungsweise das Volumen der Abfälle nach ihrer fachgerechten Verpackung (Konditionierung) ergibt sich folgendes Bild:

  • Rund 27.000 Kubikmeter verursachen die radioaktiven Abfälle mit nennenswerter Wärmeentwicklung.
  • Die radioaktiven Abfälle mit geringer Wärmeentwicklung können bis zu 620.000 Kubikmeter ausmachen. Die Gesamtmenge ist derzeit noch stark davon abhängig, wie groß das Volumen der Abfälle aus der Schachtanlage Asse II nach deren Bergung und Konditionierung wird. Außerdem ist auch die Menge der Rückstände aus der Urananreicherung noch nicht exakt zu beziffern.

Woraus radioaktive Abfälle bestehen

Bei radioaktiven Abfällen handelt sich um radioaktive Stoffe, die nach ihrer Nutzung nicht mehr benötigt werden und auch nicht anderweitig genutzt werden können. Das trifft zum Beispiel für verbrauchte Brennelemente aus den Atomkraftwerken (Kernkraftwerken) zu. Ebenso fallen zum Beispiel Prüfstrahler aus industriellen Messeinrichtungen zur Erfassung von Füllständen darunter sowie zahlreiche radioaktive Stoffe aus Laboren, Betrieben oder auch von Krankenhäusern.

Daneben werden durch den Umgang mit radioaktiven Stoffen Werkzeuge, Schutzkleidung, Filter, Reinigungsmittel, Laborabfälle, ausgediente Anlagenteile und Komponenten wie Pumpen, Rohrleitungen oder Bauwerksteile und andere Gegenstände radioaktiv verunreinigt. Diese Verschmutzung nennt sich Kontamination. Wenn sie entfernt werden kann, fällt nur das radioaktive Material als Abfall an, andernfalls werden die verschmutzen Teile als radioaktive Abfälle erfasst. Diese Materialien zählen zu den schwach- und mittelradioaktiven Abfällen und sind vernachlässigbar wärme entwickelnd. Da es sich häufig um größere Anlagenteile mit geringen radioaktiven Bestandteilen handelt, ist ihre Menge ungleich größer als die der hochradioaktiven Materialien.

Der Weg zur Endlagerung ist lang

Für gut die Hälfte (303.000 Kubikmeter) der schwach- und mittelradioaktivenAbfälle hat Deutschland mit dem genehmigten Endlager Konrad einen Entsorgungsweg gefunden. Für die hochradioaktiven Abfälle wird ein Endlager gesucht. Im Standortauswahlprozess ist die BGE mit der Suche nach einem geeigneten Ort für ein Endlager für insbesondere die hochradioaktiven Abfälle beauftragt. Der Weg dahin ist im Standortauswahlgesetz rechtlich vorgegeben. Er erfolgt in mehreren Schritten.

Für die fortschreitende Planung des Endlagerbedarfs sind Prognosen über die Menge der radioaktiven Abfälle notwendig. Die Prognosedaten werden von den Abfallverursachern an die BGE übermittelt. Aus den Daten erfolgt ein Abgleich und eine Bewertung für die zu erwartende Menge und das dafür benötigte Endlagervolumen.
Quelle: Bundesgesellschaft für Endlagerung mbH

Radioaktive Abfälle

Download
0:00
0:00

Welche Gesteinsformationen kommen in Frage?

Tonstein

Tonsteine gehören zur Gruppe der Sedimentgesteine, die aus älteren Gesteinen durch Prozesse der Verwitterung, der Erosion, des Transports und anschließender Sedimentation und Verfestigung hervorgegangen sind. Durch Ablagerung in ruhigen Gewässern, z. B. in küstenfernen Bereichen von Seen und Meeren sowie in Stillwasserbereichen von Flusssystemen bilden sich zunächst unverfestigte Tone. Sie entstehen, wenn gröbere und schwerere Körner bereits sedimentiert wurden und nur noch die feinen, im Wasser schwebenden Ton-Partikel in ruhige, strömungsarme Bereiche gelangen und sich dort absetzen können. Tone werden zu Tonsteinen, indem sie durch zunehmende Überlagerung von anderen Sedimenten immer stärker kompaktiert und verfestigt werden.

Tonsteine unterscheiden sich von den übrigen Sedimentgesteinen dadurch, dass sie überwiegend aus Partikeln mit der kleinsten Korngröße, der Tonfraktion (< 0,002 mm), bestehen. Bei den zumeist plattigen Ton-Partikeln handelt es sich hauptsächlich um die sogenannten Tonminerale, wie z. B. Kaolinit, Montmorillonit und Illit. Diese sind bei der chemischen Verwitterung neu entstanden. Untergeordnet bestehen Tonsteine auch aus mechanisch oder chemisch zerkleinerten Fragmenten von Mineralen wie beispielsweise Quarz,Muskovit, Feldspat und Karbonat. Geringfügige Beimengungen von beispielsweise Limonit, Hämatit, Chlorit oder auch organische Kohlenstoffverbindungen sind für die unterschiedlichen Farben (grau, schwarz, rot, grün) von Tonsteinen verantwortlich.

Tonsteine verfügen über eine hohe Dichtheit. Sie sind aufgrund ihrer feinen Körnung nur schwer durchlässig für Flüssigkeiten und Gase und wirken im geologischen Untergrund somit als Barrieregesteine. Darüber hinaus sind sie aufgrund der Struktur und der großen Oberfläche der Tonminerale in der Lage, Ionen - z. B. Schwermetalle oder Radionuklide -  reversibel zu binden. Man spricht hier auch von Adsorption. Im Kontakt mit Wasser reagieren Tonminerale quellfähig und sind dadurch in der Lage, Risse zu schließen.

Als Tonsteinformation ist eine oft mehrere Meter bis über hundert Meter mächtige Abfolge von Tonsteinen zu verstehen. Da in der Natur keine reinen Tonsteine in so großen Mächtigkeiten vorkommen, sind insolchen Formationen häufig geringfügige Beimengungen oder geringmächtige Lagen aus sandigem, siltigem, karbonatischem, organischem oder sonstigem Material enthalten.

Bildrechte: LBEG

Kristallingestein

Kristallingesteinsformationen sind in mehreren Ländern als Wirtsgesteinsformationen für die Einlagerung von hoch radioaktiven Abfällen vorgesehen. Im internationalen Sprachgebrauch werden diese Gesteinskomplexe als „crystalline basement“ bezeichnet und beziehen sich in der Endlagerung vor allem auf plutonische oder bestimmte metamorphe Gesteine. Daneben werden auch Vulkanite, wie beispielsweise Porphyrite, von einigen Ländern auf ihre Eignung als mögliche Wirtsgesteine untersucht.

Plutonische Gesteine entstehen aus Gesteinsschmelzen (Magmen), die aus großer Tiefe in die Erdkruste aufsteigen und dort langsam abkühlen. Nacheinander kristallisieren verschiedene Minerale (z. B. Glimmer, Feldspat, Quarz) aus und es entstehen jenach Bildungsbedingungen unterschiedliche Gesteinsarten und –varietäten. Granite sind die häufigsten Vertreter der plutonischen Gesteine und treten in zahlreichen Varietäten auf, die meist mit regionalen Namen bezeichnet werden, wie z. B. der Okergranit aus dem Harz oder der Ålandgranit aus Skandinavien. Daneben zählen unter anderem Diorite, Gabbros und Peridotite zu den Plutoniten.

Metamorphe Gesteine sind während Gebirgsbildungsprozessen unter erhöhten Druck- und Temperaturbedingungen in großen Tiefen entstanden. Sie sind ohne Aufschmelzung chemisch und strukturell aus älteren Gesteinen umgewandelt worden. Je nach Ausgangsmaterial und Druck-/Temperatur-Bedingungen entstehen dabei viele unterschiedliche Gesteine, die sich durch Mineralbestand und Gefügemerkmale unterscheiden lassen. Beispiele für häufige metamorphe Gesteine sind z. B.Gneise, Amphibolite oder Eklogite. Kommt es bei der Gesteinsumwandlung zu Teilaufschmelzungen (Anatexis), entstehen Migmatite.

Plutonische und metamorphe Gesteinsmassive sind in großen Tiefen in der Erdkruste gebildet worden. Sie werden erst lange nach ihrer Entstehung durch tektonische Geländehebungenund Erosion der überlagernden Gesteinsschichten an der Oberfläche sichtbar.

Kristallingesteinsformationen zeichnen sich durch eine hohe Festigkeit, sehr geringes Lösungsverhalten und hohe Temperaturbelastbarkeit aus. Endlagerbergwerke weisen daher eine hohe Stabilität auf, müssen aber wegen der Klüftigkeit der Gesteine mit geotechnischen Barrieren versehen werden.

Steinsalz

Der Untergrund Norddeutschlands ist reich an Salzvorkommen, die sich im Laufe der Erdgeschichte in Sedimentationsbecken durch Verdunstung (Evaporation) der im Meerwasser gelösten Salze gebildet haben. Insbesondere die vor ca. 255 Mio. Jahren gebildeten und primär bereits sehr mächtigen Salzgesteinsformationen des Zechstein haben durch Mobilisationsprozesse in den nachfolgenden Mio. Jahren einen großen Formenreichtum erfahren.

Die Lagerung der Salzgesteine lässt sich grundsätzlich unterteilen in die „flache Lagerung“, worunter eine weitgehend schichtparallele „ursprüngliche“ Lagerung zu verstehen ist und die „steile Lagerung“, die durch z. T. erhebliche Salzwanderungsprozesse und Akkumulationen entstanden ist. Als Strukturformen haben sich z. B. Salzkissen, Salzsättel, Salzstöcke und Salzmauern entwickelt. In diesen Strukturen sind durch Verformungs- und Bruchprozesse der Salzgesteine z. T. komplexe Lagerungsverhältnisse entstanden.

Salzformationen sind im Allgemeinen zyklisch aufgebaut. Ein kompletter Zyklus besteht aus einer charakteristischen Abfolge von Karbonaten wie Dolomit und Kalkstein, Sulfaten wie Gips bzw. Anhydrit sowie Steinsalz und Kalisalzen. Innerhalb der Salzformationen gibt es Unterbrechungen oder Wiederholungen von Zyklusteilen. Ziel der Suche im Rahmen des Standortauswahlprozesses sind weitgehend homogene möglichst mächtige Steinsalz­bereiche, die als schützende geologische Barriere dienen.

Steinsalz weist als Wirtsgestein eine Reihe von positiven Eigenschaften auf, wie z. B. eine hohe spezifische Wärmeleitfähigkeit und Temperaturbelastbarkeit sowie eine geringe Durchlässigkeit. Aufgrund der besonderen Eigenschaft des kriechenden Verformungsverhaltens werden die Abfälle mit der Zeit komplett eingeschlossen. Da Steinsalz eine hohe Löslichkeit gegenüber ungesättigten Lösungen aufweist, ist der zusätzliche Schutz durch einen günstigen Aufbau des Deckgebirges mit u. a. grundwasserhemmenden Gesteinengegen unterirdische Ablaugungsvorgänge in der Abwägung ein wichtiges Kriterium.

Bildreche: LBEG
Verfasst am 
14.11.2018